CONFIDENTIAL

Predicting the turn-around-time of the preconsultation blood tests for patients at the Diabetes Centre

20 Aug 2013

Matthew E. Han

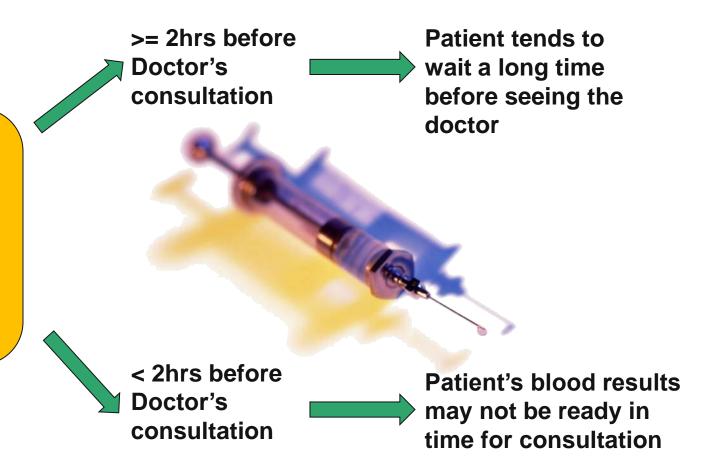
Partners in Academic Medicine

Introduction: The Diabetes Centre (DBC)

The Diabetes Centre

- One-stop centre for diabetic patients to see:
 - A doctor
 - A podiatrist
 - A dietician
 - A nurse educator
 - A foot-screening nurse
- Majority of the patients (including new cases) requires blood results before seeing the doctor

Introduction: A centralized phlebotomy facility services DBC and other SOC


The Clinical Laboratory at Blk 3

- Provides phlebotomy services for DBC and SOC
- Consist of 8 phlebotomy stations & a backroom lab
- Has 2 counters to for patients to make payment before blood-taking
- DBC patients make up **5%** of the Clinical Laboratory's workload

Introduction: A typical patient with diabetes that requires a blood test before seeing a doctor

Patients with noncomplex tests are told to come **2 hrs** before the doctors consultation but....

Scenario One: Patient needing to wait long to see the doctor

Patient arriving >= 2hrs before doctor's consultation

TAT time for bloodtaking TAT for results to be out in SCM

Waiting time to see the doctor

Patient's appointment time

Scenario Two: Results not ready when it is the patient's turn to see the doctor

Patient arriving <2hrs before doctor's consultation

TAT time for bloodtaking TAT for results to be out in SCM

Patient's appointment time

The ideal for us to achieve: Reduce waiting time for both blood-taking and to see the doctor

Same day blood-taking (for patients with standard tests only) with minimal waiting to see the doctor

TAT time for bloodtaking TAT for results to be out in SCM

Even better if we can reduce the TAT for blood-taking!

TAT time for blood-taking

TAT for results to be out in SCM

What we discovered after conducting a in-depth time-motion study

With the recommended 2 hrs...

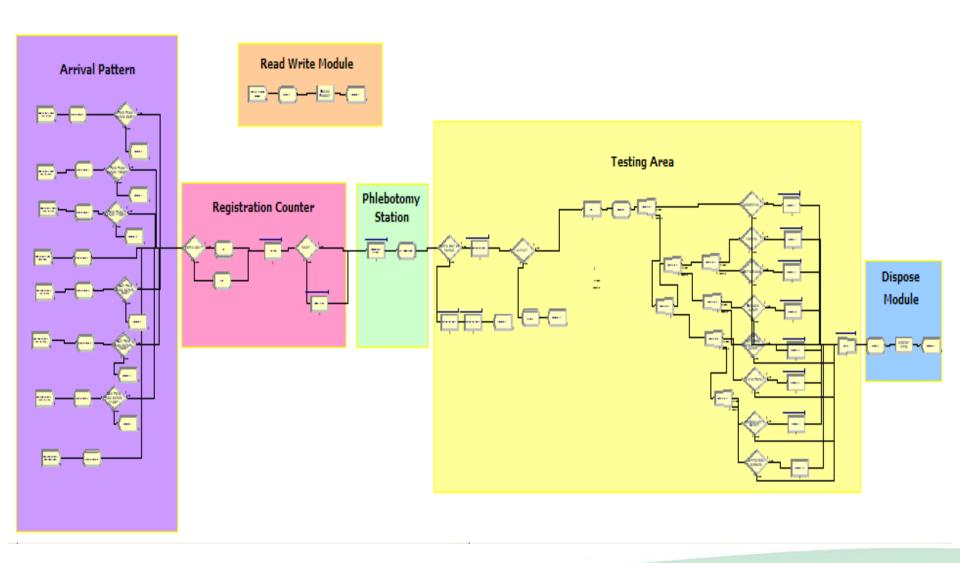
Percentile	Total TAT
10 th	51 min
50 th	72 min
75 th	90 min
90 th	108 min

50% of our patients wait around **50** minutes or more for the doctor

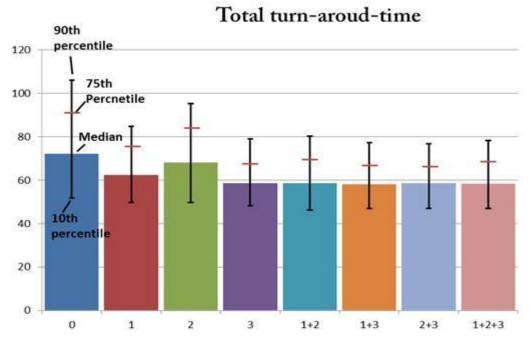
It seems 1.5 hrs would be the best

Instead of just recommending 1.5 hrs as the 'best' estimation, we decided to explore improving the TAT for blood-taking

Increase the no. of phlebotomy stations?


Encourage patients to make pre-payment for bloods to avoid the queue?

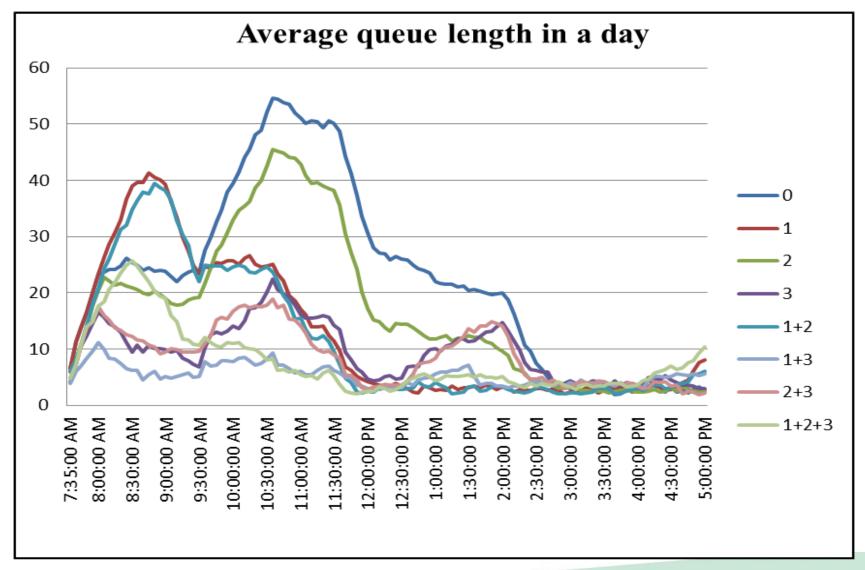
Encourage non-fasting or patients with no doctor's consultation to draw blood during the off peak hours (afternoon)?


We decided to use a simulation model to determine which permutation yields the best outcome

Permutation	Scenarios played out on the simulation model
0	Current
1	Increase the number of phlebotomy stations
	from 6 to 8
2	All patients with doctor's consultation on the
	same day to make pre-payment
3	Shift 30% of non-same-day patients in the
	morning to the afternoon
1+2	Implement 1 and 2 together
1+3	Implement 1 and 3 together
2+3	Implement 2 and 3 together
1+2+3	Implement 1, 2, and 3 together

How our simulation model looked like

The results after running the simulation over 50 replications


Option 1: Increase phlebotomy stations from 6 to 8

Option 2: All patients with doctor's consultation on the same day to make pre-payment

Option 3: Shift 30% of non-sameday patients in the morning to the afternoon

(mins)	0	1	2	3	1+2	1+3	2+3	1+2+3
10th percentile	52	50	50	48	48	47	47	47
Median	72	62	68	59	60	58	58	58
75th percentile	89	74	81	68	70	67	67	67
90th percentile	106	85	95	79	83	77	77	77

We also determined the average number of patients that will be queuing at the Clinical Laboratory

A Priority Matrix was used to determine which option has the best yield per effort

Options	Ease of implementation (qualitative)	Impact (quantitative)	Total Score	
1+3	5	8	40	
2+3	4	8	32	
1+2+3	3	8	24	

Option 1: Increase phlebotomy stations from 6 to 8

Option 2: All patients with doctor's consultation on the same day to make pre-payment

Option 3: Shift 30% of non-same-day patients in the morning to the afternoon

Conclusion

afternoon

phlebotomy stations That's a potential TAT for reduction of 120mins DBC patients of -67mins = 67mins **53mins** of waiting (75th Per) 30% of no consult patients shifting to

CONFIDENTIAL

Thank You.

Matthew E. Han

Partners in Academic Medicine

- research

CONFIDENTIAL

BACK-UP SLIDES

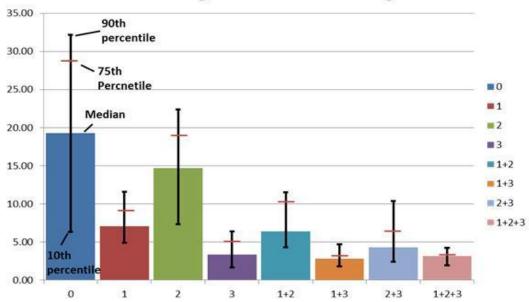
- adocation

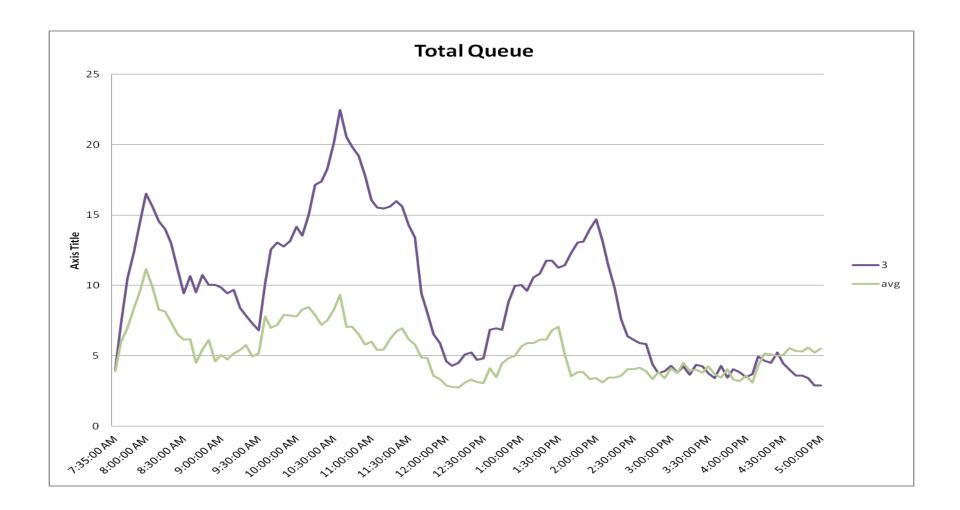
eresearc

Matthew E. Han

Partners in Academic Medicine

Members of the SingHealth Group





Waiting time for blood-taking

	0	1	2	3	1+2	1+3	2+3	1+2+3
10th percentile	6.35	4.93	7.36	1.69	4.29	1.83	2.45	1.97
Median	19.32	7.06	14.70	3.34	6.42	2.86	4.30	3.19
75th percentile	29.04	9.50	19.54	5.33	10.13	3.63	6.40	3.84
90th percentile	32.19	11.60	22.37	6.39	11.53	4.73	10.37	4.26

