Optimal Placement of AEDs to Maximise Coverage of OHCAs in Singapore: Development of a Web Application for Policy Planners Sean Shao Wei LAM, SingHealth, Duke-NUS Ahmad Reza POURGHADERI, SingHealth, Duke-NUS Ronald Wen Li CHEONG, SingHealth Alexander Elgin WHITE, UPEC, Duke-NUS

Singapore Healthcare Management 2022

NUS ISE Interns: Mok Kai Sheng Daryl | Zhou Sixiang | Chong Si Ya | Ng Eugene

Marcus Eng Hock **ONG**, SingHealth, Duke-NUS

Acknowledgements: We would like to thank the NUS Industrial and Systems Engineering, SDP Office for their support in this study

Background:

- Out-of-hospital cardiac arrest (OHCA) can happen suddenly and with high mortality rates.
- Early defibrillation to restart the heart can improve survival rates.
- Public Access Defibrillation (PAD) programs entail installing accessible automated external defibrillators (AED) in the community to allow quicker access by bystanders and supports early defibrillation.

Objectives:

- Develop an intelligent algorithm to identify the optimal installation locations for AEDs in Singapore -to reduce time taken to access AEDs, increase the rate of AEDs applied to OHCA victims, and thus help improve OHCA survival rate by using mathematical optimization techniques.
- Develop an interactive dashboard to support the decision making capabilities of AED planners.

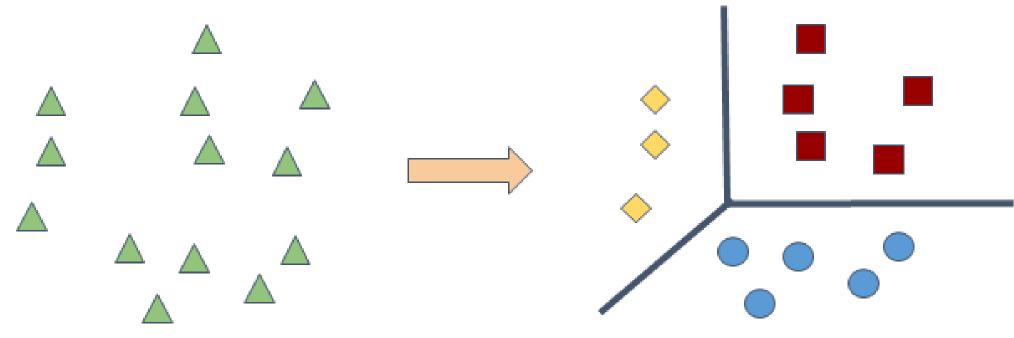
Project Roadmap				
Optimizing AED Coverage	Dashboard For Visualisaion	Testing and User Feedback		
 Maximal Coverage Location Problem (MCLP) Probabilistic Coverage Model (PCM) K-Means Clustering 	 Data extraction and cleaning using Python Web-based Frontend Development Model Implementation 	matrices		

Data

- Ten years (2010-2019) of historical cardiac arrests data from the Pan-Asian Resuscitation Outcomes Study (PAROS) were first visualized and clustered by Python
- URA and Census data were gathered from web sources

Implementation

 Models were developed in Python scikit-learn and Gurobi optimization framework

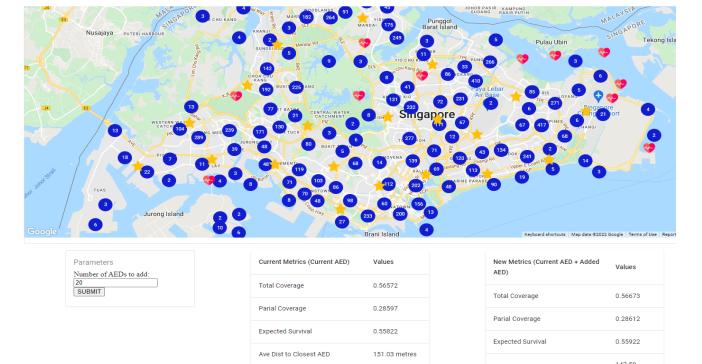

Performance Metrics

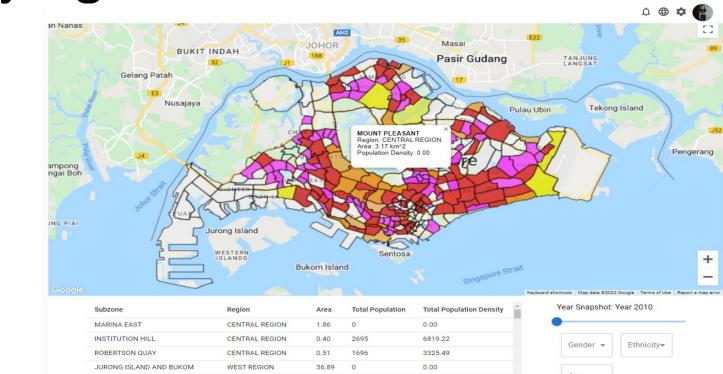
and merged with the PAROS dataset

Methods

K-Means Clustering:

- K-Means Algorithm was used to group data points into clusters based on minimization of sum of squared Euclidean distances within clusters.
- OHCA patients are clustered into groups and AEDs locations are identified by cluster centroids.




Maximal Coverage Location Problem (MCLP)

• Optimization model that maximizes the total number of demand points covered within distance limitations.

	Original	Model		
Total coverage (% OHCAs covered)	0.566	0.646		
Partial coverage (% OHCAs covered)	0.286	0.339		
Expected Survival	0.558	0.620		
Average distance (OHCA to AED) (in m)	151	91.88		
Full-stack Application				

- A full stack web application implemented with a userfriendly interface for data refresh, model solving and visualization
- Implemented in Python Django.

Probabilistic Coverage Model (PCM)

- PCM was modified with an exponentially decreasing coverage function that represents the gradual coverage of the AED.
- Overall coverage becomes the best-case probability of covering OHCA cases.

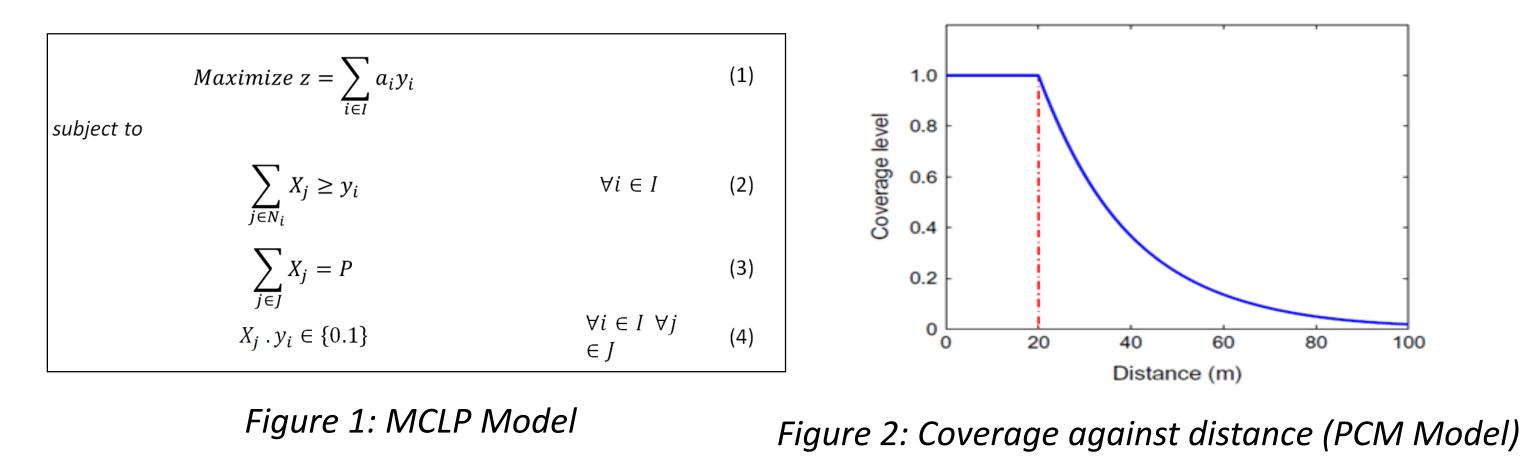


Figure 3: User Interface in web application

- Our dashboard visualizes OHCA heat maps in 332
 Singapore subzones that can be filtered by age, gender and ethnicity
- Decisionmakers can utilize the dashboard to evaluate AED deployment policies with a user-friendly interface to facilitate data-driven decisions.