Managing Multidimensional Risks Associated
with the use of Artificial Intelligence
Technologies for the Delivery of Health Services
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Background: Promise of Artificial Intelligence in Medicine

The ongoing narrative in the use of Artificial Intelligence (Al) in medicine and healthcare suggests that this technology will significantly disrupt the health services
delivery process across the entire care delivery chain. There exists a huge potential for the innovative use of Al in medicine and healthcare. This poster outlines an
exploratory study into the area of Al governance from the perspective of Fairness, Accountability, Transparency and Ethics (FATE). The focus of the expository study
will be in the development of rigorous data scientific approaches for improving Al Accountability and Transparency through explainable Al models.
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Mathematical Framework for Explanable Al Case Study — AHD Diagnosis
Desired Characteristics of Explanable Al models: Atherosclerosis Heart Disease (AHD) Explanable Prediction
* Interpretability that is able to account for user’s limitations in understanding Doctors deciding if they should diagnose a patient with Atherosclerosis Heart
the machine explanations Disease (AHD) using Explainable Al for augmenting clinical decisions. Data
* Local fidelity. Usually it is impossible to explain a complex Al model faithfully, obtained from: http://www-bcf.usc.edu/~gareth/ISL/Heart.csv
but a meaningful explanation should be available which is locally faithful o _ e N
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on importance by feature weights.
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* Global perspective. Explanation should also be globally consistent.

coverage across all instances
subjected to a finite budget.
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