Reducing Ambulance Response Times Using Discrete Event Simulation

Sean Lam Shao Wei¹, Zhang Ji², Oh Hong Choon³, Ng Yih Yng⁴, Win Wah⁵, Marcus Ong Eng Hock²

1 Division of Research, Singapore General Hospital
2 Department of Emergency Medicine, Singapore General Hospital
3 Centre for Health Services Research, SingHealth
4 Medical Department, Singapore Civil Defence Force
5 Saw Swee Hock School of Public Health, National University of Singapore

A. Background

Emergency Medical Services (EMS) play an important role in health service provision.

- EMS: A system which provides for the arrangement of personnel, facilities, and equipment for the effective and coordinated delivery of health care services under emergency conditions.
- One of the Primary Goals of EMS: To reduce the morbidity and mortality of patients involved in out-of-hospital medical and trauma events.
- Response Time: The time it takes for a dispatched ambulance to arrive on scene.

The call arrival rates vary across different times of the day, and day of the week. The average call volume for Monday was highest as compared to other days.

The call arrival rates also varied geospatially across postal districts. Within each district, the frequency and location of emergency calls were also found to vary across different building types.

The spatial and temporal variations of call arrivals are displayed in the figures above and on the right, respectively.

B. Aim

- To develop a discrete-event simulation (DES) model for the Singapore Emergency Medical Services (EMS) for the cost-effective improvement of ambulance response times.

C. Methods

Study Design:
A computer-based model was developed based on retrospective emergency calls data over a continuous 6 months period from May 2009 to October 2009 for the entire Singapore.

Outcome Measure:
The main outcome measure is the distribution of response times.

The secondary outcome measure is ambulance utilization levels based on unit hour utilization (UHU) ratios.

Study Protocol:
The flowchart on the left shows a detailed representation of the operational processes of Singapore EMS system.

Travel time estimation forms an important consideration in the model. The ideal travel times are projected using ArcGIS 10 software, and a correction factor was computed based on the rate of historical ambulance travel time to the ideal travel time.

Policy Evaluation
The DES model was used to evaluate different policies to improve the response times, whilst maintaining reasonable fleet utilization levels. These policies are described along the following strategy dimensions:

- Strategy 1: Ambulance Reallocation
- Strategy 2: Addition of Ambulances
- Strategy 3: Ambulance Dispatch Policy

D. Results

Travel Times Correction Factors. The correction factor varies across four dimensions: (1) day of week, (2) time of day, (3) ideal travel time, and (4) nature of trip.

Model Validation. The figures on the right and below illustrate the validation results by comparing the simulated outputs with historical data on the arrival call patterns, the ambulance cycle times and ambulance response times.

The model projections for these criteria matched closely to the historical performance of the EMS system.

Ambulance cycle times distribution
Ambulance response times distribution

E. Conclusion

DES serves as a versatile platform to model dynamic system complexities of Singapore’s EMS systems for the evaluation of operational strategies to improve ambulance response time performance. It was shown through DES that response times can be improved via a more effective reallocation of ambulances and dispatch policy.